Biotecnologia

Reprogramação Celular e Hematopoiesis

Reprogramação Celular

Epigenética

Células Estaminal Hematopoiética

Célula Dendrítica

Imunoterapia


Linhas de interesse

Indução de Tipos Celulares para a Medicina Regenerativa: Programação dos Tipos Celulares do Sangue

Programação, Reprogramação e Biologia do Desenvolvimento

Desenvolvimento de Novas Terapias

Visão Geral

 

The focus of our laboratory is to understand the molecular determinants underlying cell reprogramming and hematopoietic specification. In humans, the multiple differentiated cell states are normally stable and inherited through cell division. Under certain conditions, cell fate can, however, be modified or reversed. Cell reprogramming can be achieved experimentally in different ways, including nuclear transfer, cell fusion or expression of transcription factors. The emergent ability to directly reprogram somatic cells into desired hematopoietic cell-types is opening avenues to the discovery of new therapies for immune and blood diseases. Our approach focuses on Hematopoietic Stem Cells (HSCs) for their remarkable regenerative potential and Dendritic Cells (DCs) as key mediators of immunity.

Aims:
• To understand at the molecular level how hematopoietic cellular identities are specified during development employing cellular reprogramming
• To use this knowledge to allow the generation of patient-specific hematopoietic and immune cells for regenerative medicine and immunotherapy

Our research will increase the understanding of the intrinsic determinants underlying hematopoietic progenitor and effector cell developmental specification. This knowledge may allow the re-creation of these unique cell identities from any human cell. Ultimately, we believe that our research will contribute to personalized hematopoietic regeneration by employing human programmed HSCs for patient-specific cell transplantation. In addition, DC reprogramming is allowing us to develop new ways to modulate the immune response. This represents a unique opportunity to merge the field of cell reprogramming and cancer immunotherapy and may result in the development of powerful new therapeutics for cancer and other diseases resulting from a dysfunctional immune system.

 

Publicações

Mostrar menos

Informação sobre artigos em revista, actualizada a 22-05-2022, a partir da plataforma CIÊNCIAVITAE.

Reprogramming Stars #5: Regeneration, a Natural Reprogramming Process—An Interview with Dr. Nicholas Leigh

Leigh, Nicholas D.; Pereira, Carlos-Filipe, 2022. Cellular Reprogramming. 2 - 8. 1. 24. 2022. http://dx.doi.org/10.1089/cell.2022.29055.nl . 10.1089/cell.2022.29055.nl . Cellular Reprogramming

Single cell RNA-seq informs efficient reprogramming of human somatic cells to cross-presenting dendritic cells

Pereira, Carlos-Filipe, 2022. Science Immunology. 2022. published Science Immunology

HMGA1 Has Predictive Value in Response to Chemotherapy in Gastric Cancer

Pádua, Diana; Pinto, Débora Filipa; Figueira, Paula; Pereira, Carlos Filipe; Almeida, Raquel; Mesquita, Patrícia, 2021. Current Oncology. 56 - 67. 1. 29. 2021. http://dx.doi.org/10.3390/curroncol29010005 . 10.3390/curroncol29010005 . Current Oncology

Reprogramming Stars #4: A Reprogramming Approach for Parkinson's Disease—An Interview with Dr. Malin Parmar

Parmar, Malin; Pereira, Carlos-Filipe, 2021. Cellular Reprogramming. 319 - 325. 6. 23. 2021. http://dx.doi.org/10.1089/cell.2021.29049.mp . 10.1089/cell.2021.29049.mp . Cellular Reprogramming

Reprogramming Stars #3: Mechanisms of iPSC Reprogramming—An Interview with Dr. Keisuke Kaji

Kaji, Keisuke; Pereira, Carlos-Filipe, 2021. Cellular Reprogramming. 264 - 269. 5. 23. 2021. http://dx.doi.org/10.1089/cell.2021.29046.kk . 10.1089/cell.2021.29046.kk . Cellular Reprogramming

Reprogramming Stars #2: Reprogramming Towards Neural Lineages—An Interview with Dr. Henrik Ahlenius

Ahlenius, Henrik; Pereira, Carlos-Filipe, 2021. Cellular Reprogramming. 200 - 205. 4. 23. 2021. http://dx.doi.org/10.1089/cell.2021.29044.ha . 10.1089/cell.2021.29044.ha . Cellular Reprogramming

Cell Fate Reprogramming in the Era of Cancer Immunotherapy

Zimmermannova, Olga; Caiado, Inês; Ferreira, Alexandra G.; Pereira, Carlos-Filipe, 2021. Frontiers in Immunology. 12. 2021. http://dx.doi.org/10.3389/fimmu.2021.714822 . 10.3389/fimmu.2021.714822 . Frontiers in Immunology

Reprogramming Stars #1: Genome Programming Through the Cell Cycle—An Interview with Dr. Tomomi Tsubouchi

Tsubouchi, Tomomi; Pereira, Carlos-Filipe, 2021. Cellular Reprogramming. 153 - 157. 3. 23. 2021. http://dx.doi.org/10.1089/cell.2021.29039.tt . 10.1089/cell.2021.29039.tt . Cellular Reprogramming

Reprogramming, The Journal

Pereira, Carlos-Filipe, 2021. Cellular Reprogramming. 2021. http://dx.doi.org/10.1089/cell.2021.0036 . 10.1089/cell.2021.0036 . Cellular Reprogramming

Ontogenic Shifts in Cellular Fate are Linked to Proteotype Changes in Lineage-Biased Hematopoietic Progenitor Cells

Pereira, Carlos-Filipe, 2021. Cell Reports. 2021. in press Cell Reports

Direct Reprogramming of Mouse Embryonic Fibroblasts to Conventional Type 1 Dendritic Cells by Enforced Expression of Transcription Factors

Rosa, Fábio; Pires, Cristiana; Zimmermannova, Olga; Pereira, Carlos-Filipe, 2020. BIO-PROTOCOL. 10. 10. 2020. http://dx.doi.org/10.21769/bioprotoc.3619 . 10.21769/bioprotoc.3619 . BIO-PROTOCOL

Mononuclear phagocyte regulation by the transcription factor Blimp-1 in health and disease

Ulmert, Isabel; Henriques-Oliveira, Luís; Pereira, Carlos-Filipe; Lahl, Katharina, 2020. Immunology. 303 - 313. 4. 161. 2020. http://dx.doi.org/10.1111/imm.13249 . 10.1111/imm.13249 . Immunology

A SOX2 Reporter System Identifies Gastric Cancer Stem-Like Cells Sensitive to Monensin

Pádua, Diana; Barros, Rita; Amaral, Ana Luísa; Mesquita, Patrícia; Freire, Ana Filipa; Sousa, Mafalda; Maia, André Filipe; et al, 2020. Cancers. 2. 12. 2020. http://dx.doi.org/10.3390/cancers12020495 . 10.3390/cancers12020495 . Cancers

Induction of human hemogenesis in adult fibroblasts by defined factors and hematopoietic coculture

Daniel, M.G.; Sachs, D.; Bernitz, J.M.; Fstkchyan, Y.; Rapp, K.; Satija, N.; Law, K.; et al, 2019. FEBS Letters. 3266 - 3287. 23. 593. 2019. http://www.scopus.com/inward/record.url?eid=2-s2.0-85074051202&partnerID=MN8TOARS . 10.1002/1873-3468.13621 . FEBS Letters

Hemogenic Reprogramming of Human Fibroblasts by Enforced Expression of Transcription Factors

Silvério-Alves, R.; Gomes, A.M.; Kurochkin, I.; Moore, K.A.; Pereira, C.-F., 2019. Journal of visualized experiments : JoVE. 153. 2019. http://www.scopus.com/inward/record.url?eid=2-s2.0-85075191300&partnerID=MN8TOARS . 10.3791/60112 . Journal of visualized experiments : JoVE

Understanding and Modulating Immunity With Cell Reprogramming

Pires, C.F.; Rosa, F.F.; Kurochkin, I.; Pereira, C.-F., 2019. Frontiers in Immunology. 10. 2019. http://www.scopus.com/inward/record.url?eid=2-s2.0-85077260284&partnerID=MN8TOARS . 10.3389/fimmu.2019.02809 . Frontiers in Immunology

Is immunotherapy the holy grail for pancreatic cancer?

Andersson, R.; Pereira, C.-F.; Bauden, M.; Ansari, D., 2019. Immunotherapy. 1435 - 1438. 17. 11. 2019. http://www.scopus.com/inward/record.url?eid=2-s2.0-85076450369&partnerID=MN8TOARS . 10.2217/imt-2019-0164 . Immunotherapy

Ihor R. Lemischka (1953-2017) Obituary

Ivanova, Natalia; Pereira, Carlos-Filipe; Lee, Dung-Fang, 2018. Cell. 1 - +. 1-2. 172. 2018. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000419840100001&KeyUID=WOS:000419840100001 . 10.1016/j.cell.2017.12.028 . Cell

Ihor R. Lemischka (1953-2017)

Ivanova, Natalia; Pereira, Carlos-Filipe; Lee, Dung-Fang, 2018. Cell Stem Cell. 16 - +. 1. 22. 2018. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000419306500008&KeyUID=WOS:000419306500008 . 10.1016/j.stem.2017.12.015 . Cell Stem Cell

Direct reprogramming of fibroblasts into antigen-presenting dendritic cells

Rosa, Fabio F.; Pires, Cristiana F.; Kurochkin, Ilia; Ferreira, Alexandra G.; Gomes, Andreia M.; Palma, Luis G.; Shaiv, Kritika; et al, 2018. Science Immunology. 30. 3. 2018. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000452571800002&KeyUID=WOS:000452571800002 . 10.1126/sciimmunol.aau4292 . Science Immunology

Cooperative Transcription Factor Induction Mediates Hemogenic Reprogramming

Gomes, Andreia M.; Kurochkin, Ilia; Chang, Betty; Daniel, Michael; Law, Kenneth; Satija, Namita; Lachmann, Alexander; et al, 2018. Cell Reports. 2821 - +. 10. 25. 2018. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000452894600018&KeyUID=WOS:000452894600018 . 10.1016/j.celrep.2018.11.032 . Cell Reports

INDUCTION OF HEMOGENIC REPROGRAMMING IN HUMAN FIBROBLASTS

Gomes, A.; Pereira, C. -F.; Chang, B.; Kurochkin, I.; Daniel, M.; Law, K.; Satija, N.; et al, 2017. Haematologica. 102. 2017. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000404127006340&KeyUID=WOS:000404127006340 . Haematologica

High-throughput identification of small molecules that affect human embryonic vascular development

Vazão, H.; Rosa, S.; Barata, T.; Costa, R.; Pitrez, P.R.; Honório, I.; De Vries, M.R.; et al, 2017. Proceedings of the National Academy of Sciences of the United States of America. E3022 - E3031. 15. 114. 2017. http://www.scopus.com/inward/record.url?eid=2-s2.0-85035214278&partnerID=MN8TOARS . 10.1073/pnas.1617451114 . Proceedings of the National Academy of Sciences of the United States of America

Transient HES5 Activity Instructs Mesodermal Cells toward a Cardiac Fate

Freire, A.G.; Waghray, A.; Soares-da-Silva, F.; Resende, T.P.; Lee, D.-F.; Pereira, C.-F.; Nascimento, D.S.; Lemischka, I.R.; Pinto-do-Ó, P., 2017. Stem Cell Reports. 136 - 148. 1. 9. 2017. http://www.scopus.com/inward/record.url?eid=2-s2.0-85021126795&partnerID=MN8TOARS . 10.1016/j.stemcr.2017.05.025 . Stem Cell Reports

MECHANISMS UNDERLYING HUMAN HEMOGENIC REPROGRAMMING

Gomes, Andreia; Pereira, Carlos-Filipe; Papatsenko, Dmitri; Moore, Kateri Ann; Lemischka, Ihor, 2016. Experimental Hematology. S75 - S76. 9. 44. 2016. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000382184600129&KeyUID=WOS:000382184600129 . 10.1016/j.exphem.2016.06.144 . Experimental Hematology

The stem cell niche finds its true north

Agnete Kirkeby; Thomas Perlmann; Carlos-Filipe Pereira, 2016. Development. 2877 - 2881. 16. 143. 2016. https://doi.org/10.1242/dev.140095 . 10.1242/dev.140095 . Development

Reprogramming mouse embryonic fibroblasts with transcription factors to induce a hemogenic program

Daniel, M.G.; Pereira, C.-F.; Bernitz, J.M.; Lemischka, I.R.; Moore, K., 2016. Journal of Visualized Experiments. 118. 2016. 2016. http://www.scopus.com/inward/record.url?eid=2-s2.0-85015946426&partnerID=MN8TOARS . 10.3791/54372 . Journal of Visualized Experiments

Hematopoietic Reprogramming In Vitro Informs In Vivo Identification of Hemogenic Precursors to Definitive Hematopoietic Stem Cells

Pereira, C.-F.; Chang, B.; Gomes, A.; Bernitz, J.; Papatsenko, D.; Niu, X.; Swiers, G.; et al, 2016. Developmental Cell. 525 - 539. 5. 36. 2016. http://www.scopus.com/inward/record.url?eid=2-s2.0-84959312876&partnerID=MN8TOARS . 10.1016/j.devcel.2016.02.011 . Developmental Cell

ZERO FOOTPRINT INDUCTION OF HUMAN HEMOGENESIS TO STUDY PATHOLOGIC DEVELOPMENTAL HEMATOPOIESIS IN FANCONI ANEMIA

Daniel, Michael; Fstkchyan, Yesai; Gomes, Andreia; Pereira, Carlos-Filipe; Lemischka, Ihor; Moore, Kateri Ann, 2016. Experimental Hematology. S65 - S65. 9. 44. 2016. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000382184600098&KeyUID=WOS:000382184600098 . 10.1016/j.exphem.2016.06.112 . Experimental Hematology

Tbx3 Controls Dppa3 Levels and Exit from Pluripotency toward Mesoderm

Waghray, A.; Saiz, N.; Jayaprakash, A.D.; Freire, A.G.; Papatsenko, D.; Pereira, C.-F.; Lee, D.-F.; et al, 2015. Stem Cell Reports. 97 - 110. 1. 5. 2015. http://www.scopus.com/inward/record.url?eid=2-s2.0-84937523983&partnerID=MN8TOARS . 10.1016/j.stemcr.2015.05.009 . Stem Cell Reports

Making a Hematopoietic Stem Cell.

Daniel MG; Pereira CF; Lemischka IR; Moore KA, 2015. 2015. http://europepmc.org/abstract/med/26526106 . 10.1016/j.tcb.2015.10.002 .

"There will be blood" from fibroblasts

Pereira, C.-F.; Lemischka, I.R.; Moore, K., 2014. Cell Cycle. 335 - 336. 3. 13. 2014. http://www.scopus.com/inward/record.url?eid=2-s2.0-84896884486&partnerID=MN8TOARS . 10.4161/cc.27507 . Cell Cycle

'From blood to blood': De-differentiation of hematopoietic progenitors to stem cells

Pereira, C.-F.; Lemischka, I.R.; Moore, K., 2014. EMBO Journal. 1511 - 1513. 14. 33. 2014. http://www.scopus.com/inward/record.url?eid=2-s2.0-84904561142&partnerID=MN8TOARS . 10.15252/embj.201488980 . EMBO Journal

DIRECT CONVERSION FROM MOUSE FIBROBLASTS INFORMS THE IDENTIFICATION OF HEMOGENIC PRECURSOR CELLS IN VIVO

Pereira, Carlos-Filipe; Chang, Betty; Niu, Xiaohong; Gomes, Andreia; Swiers, Gemma; Azzoni, Emanuele; Schaniel, Christoph; et al, 2014. Experimental Hematology. S55 - S55. 8. 42. 2014. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000340344300196&KeyUID=WOS:000340344300196 . Experimental Hematology

Induction of a hemogenic program in mouse fibroblasts.

Pereira, Carlos-Filipe; Chang, Betty; Qiu, Jiajing; Niu, Xiaohong; Papatsenko, Dmitri; Hendry, Caroline E; Clark, Neil R; et al, 2013. Cell stem cell. 205 - 18. 2. 13. 2013. 10.1016/j.stem.2013.05.024 . Cell stem cell

Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming

Fidalgo, Miguel; Faiola, Francesco; Pereira, Carlos-Filipe; Ding, Junjun; Saunders, Arven; Gingold, Julian; Schaniel, Christoph; et al, 2012. Proceedings of the National Academy of Sciences of the United States of America. 16202 - 16207. 40. 109. 2012. 10.1073/pnas.1208533109 . Proceedings of the National Academy of Sciences of the United States of America

Regulation of Embryonic and Induced Pluripotency by Aurora Kinase-p53 Signaling

Lee, Dung-Fang; Su, Jie; Ang, Yen-Sin; Carvajal-Vergara, Xonia; Mulero-Navarro, Sonia; Pereira, Carlos F.; Gingold, Julian; et al, 2012. Cell Stem Cell. 179 - 194. 2. 11. 2012. 10.1016/j.stem.2012.05.020 . Cell Stem Cell

Using heterokaryons to understand pluripotency and reprogramming

Piccolo, Francesco M.; Pereira, Carlos F.; Cantone, Irene; Brown, Karen; Tsubouchi, Tomomi; Soza-Ried, Jorge; Merkenschlager, Matthias; Fisher, Amanda G., 2011. Philosophical Transactions of the Royal Society B-Biological Sciences. 2260 - 2265. 1575. 366. 2011. 10.1098/rstb.2011.0004 . Philosophical Transactions of the Royal Society B-Biological Sciences

ESCs Require PRC2 to Direct the Successful Reprogramming of Differentiated Cells toward Pluripotency

Pereira, Carlos F.; Piccolo, Francesco M.; Tsubouchi, Tomomi; Sauer, Stephan; Ryan, Natalie K.; Bruno, Ludovica; Landeira, David; et al, 2010. Cell Stem Cell. 547 - 556. 6. 6. 2010. 10.1016/j.stem.2010.04.013 . Cell Stem Cell

Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators

Landeira, David; Sauer, Stephan; Poot, Raymond; Dvorkina, Maria; Mazzarella, Luca; Jorgensen, Helle F.; Pereira, C. Filipe; et al, 2010. Nature Cell Biology. 618 - U214. 6. 12. 2010. 10.1038/ncb2065 . Nature Cell Biology

Differences in the epigenetic and reprogramming properties of pluripotent and extra-embryonic stem cells implicate chromatin remodelling as an important early event in the developing mouse embryo

Santos, Joana; Pereira, C. Filipe; Di-Gregorio, Aida; Spruce, Thomas; Alder, Olivia; Rodriguez, Tristan; Azuara, Veronique; Merkenschlager, Matthias; Fisher, Amanda G., 2010. Epigenetics & Chromatin. 3. 2010. 10.1186/1756-8935-3-1 . Epigenetics & Chromatin

Short RNAs Are Transcribed from Repressed Polycomb Target Genes and Interact with Polycomb Repressive Complex-2

Kanhere, Aditi; Viiri, Keijo; Araujo, Carla C.; Rasaiyaah, Jane; Bouwman, Russell D.; Whyte, Warren A.; Pereira, C. Filipe; et al, 2010. Molecular Cell. 675 - 688. 5. 38. 2010. 10.1016/j.molcel.2010.03.019 . Molecular Cell

CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression.

Schnetz, M.P.; Handoko, L.; Akhtar-Zaidi, B.; Bartels, C.F.; Pereira, C.F.; Fisher, A.G.; Adams, D.J.; et al, 2010. PLoS genetics. 7. 6. 2010. http://www.scopus.com/inward/record.url?eid=2-s2.0-79952538205&partnerID=MN8TOARS . PLoS genetics

Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression

Savarese, Fabio; Davila, Amparo; Nechanitzky, Robert; De La Rosa-Velazquez, Inti; Pereira, Carlos F.; Engelke, Rudolf; Takahashi, Keiko; et al, 2009. Genes & Development. 2625 - 2638. 22. 23. 2009. 10.1101/gad.1815709 . Genes & Development

REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells

Jorgensen, Helle F.; Terry, Anna; Beretta, Chiara; Pereira, C. Filipe; Leleu, Marion; Chen, Zhou-Feng; Kelly, Claire; Merkenschlager, Matthias; Fisher, Amanda G., 2009. Development. 715 - 721. 5. 136. 2009. 10.1242/dev.028548 . Development

Senescence impairs successful reprogramming to pluripotent stem cells

Banito, Ana; Rashid, Sheikh T.; Acosta, Juan Carlos; Li, SiDe; Pereira, Carlos F.; Geti, Imbisaat; Pinho, Sandra; et al, 2009. Genes & Development. 2134 - 2139. 18. 23. 2009. 10.1101/gad.1811609 . Genes & Development

Heterokaryon-based reprogramming for pluripotency

Pereira, C.F.; Fisher, A.G., 2009. Current Protocols in Stem Cell Biology. SUPPL. 9. 2009. http://www.scopus.com/inward/record.url?eid=2-s2.0-65149087887&partnerID=MN8TOARS . 10.1002/9780470151808.sc04b01s9 . Current Protocols in Stem Cell Biology

Hepatocytes and IL-15: A Favorable Microenvironment for T Cell Survival and CD8(+) T Cell Differentiation

Correia, Margareta P.; Cardoso, Elsa M.; Pereira, Carlos F.; Neves, Rui; Uhrberg, Markus; Arosa, Fernando A., 2009. Journal of Immunology. 6149 - 6159. 10. 182. 2009. 10.4049/jimmunol.0802470 . Journal of Immunology

Protein interactions between CD2 and Lck are required for the lipid raft distribution of CD2

Nunes, R.J.; Castro, M.A.A.; Gonçalves, C.M.; Bamberger, M.; Pereira, C.F.; Bismuth, G.; Carmo, A.M., 2008. Journal of Immunology. 988 - 997. 2. 180. 2008. http://www.scopus.com/inward/record.url?eid=2-s2.0-40449133966&partnerID=MN8TOARS . Journal of Immunology

Protein interactions between CD2 and Lck are required for the lipid raft distribution of CD2

Nunes, R.J.; Castro, M.A.A.; Gonçalves, C.M.; Bamberger, M.; Pereira, C.F.; Bismuth, G.; Carmo, A.M., 2008. Journal of Immunology. 988 - 997. 2. 180. 2008. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000252290000036&KeyUID=WOS:000252290000036 . 10.4049/jimmunol.180.2.988 . Journal of Immunology

Heterokaryon-Based Reprogramming of Human B Lymphocytes for Pluripotency Requires Oct4 but Not Sox2

Pereira, Carlos F.; Terranova, Remi; Ryan, Natalie K.; Santos, Joana; Morris, Kelly J.; Cui, Wei; Merkenschlager, Matthias; Fisher, Amanda G., 2008. Plos Genetics. 9. 4. 2008. 10.1371/journal.pgen.1000170 . Plos Genetics

Acquisition and extinction of gene expression programs are separable events in heterokaryon reprogramming

Terranova, R.; Pereira, C. F.; Du Roure, C.; Merkenschlager, M.; Fisher, A. G., 2006. Journal of Cell Science. 2065 - 2072. 10. 119. 2006. 10.1242/jcs.02945 . Journal of Cell Science

Altered expression of CD1d molecules and lipid accumulation in the human hepatoma cell line HepG2 after iron loading

Cabrita, M.; Pereira, C. F.; Rodrigues, P.; Cardoso, E. M.; Arosa, F. A., 2005. Febs Journal. 152 - 165. 1. 272. 2005. 10.1111/j.1432-1033.2004.04387.x . Febs Journal

Red blood cells as modulators of T cell growth and survival

Arosa, F. A.; Pereira, C. F.; Fonseca, A. M., 2004. Current Pharmaceutical Design. 191 - 201. 2. 10. 2004. 10.2174/1381612043453432 . Current Pharmaceutical Design

Red blood cells promote survival and cell cycle progression of human peripheral blood T cells independently of CD58/LFA-3 and heme compounds

Fonseca, A.M.; Pereira, C.F.; Porto, G.; Arosa, F.A., 2003. Cellular Immunology. 17 - 28. 1. 224. 2003. http://www.scopus.com/inward/record.url?eid=2-s2.0-0142169441&partnerID=MN8TOARS . 10.1016/S0008-8749(03)00170-9 . Cellular Immunology

Red blood cells promote survival and cell cycle progression of human peripheral blood T cells independently of CD58/LFA-3 and heme compounds

Fonseca, A. M.; Pereira, C. F.; Porto, G.; Arosa, F. A., 2003. Cellular Immunology. 17 - 28. 1. 224. 2003. 10.1016/s0008-8749(03)00170-9 . Cellular Immunology

Red blood cells upregulate cytoprotective proteins and the labile iron pool in dividing human T cells despite a reduction in oxidative stress

Fonseca, A.M.; Pereira, C.F.; Porto, G.; Arosa, F.A., 2003. Free Radical Biology and Medicine. 1404 - 1416. 11. 35. 2003. http://www.scopus.com/inward/record.url?eid=2-s2.0-0344875071&partnerID=MN8TOARS . 10.1016/j.freeradbiomed.2003.08.011 . Free Radical Biology and Medicine

Este website utiliza cookies para melhorar a sua experiência.